An algebraic model for the turbulent flux of a passive scalar

Author:

Rogers Michael M.,Mansour Nagi N.,Reynolds William C.

Abstract

The behaviour of passive-scalar fields resulting from mean scalar gradients in each of three orthogonal directions in homogeneous turbulent shear flow has been studied using direct numerical simulations of the unsteady incompressible Navier-Stokes equations with 128 × 128 × 128 grid points. It is found that, for all orientations of the mean scalar gradient, the sum of the pressure-scalar gradient and velocity gradient-scalar gradient terms in the turbulent scalar flux balance equation are approximately aligned with the scalar flux vector itself. In addition, the time derivative of the scalar flux is also approximately aligned with the flux vector for the developed fields (corresponding to roughly constant correlation coefficients). These alignments lead directly to a gradient transport model with a tensor turbulent diffusivity. The simulation results are used to fit a dimensionless model coefficient as a function of the turbulence Reynolds and Péclet numbers. The model is tested against two different passive-scalar fields in fully developed turbulent channel flow (also generated by direct numerical simulation) and is found to predict the scalar flux quite well throughout the entire channel.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3