Equatorial wave attractors and inertial oscillations

Author:

MAAS LEO R. M.,HARLANDER UWE

Abstract

Three different approximations to the axisymmetric small-disturbance dynamics of a uniformly rotating thin spherical shell are studied for the equatorial region assuming time-harmonic motion. The first is the standard β-plane model. The second is Stern's (Tellus, vol. 15, 1963, p. 246) homogeneous, equatorial β-plane model of inertial waves (that includes all Coriolis terms). The third is a version of Stern's equation extended to include uniform stratification. It is recalled that the boundary value problem (BVP) that governs the streamfunction of zonally symmetric waves in the meridional plane becomes separable only for special geometries. These separable BVPs allow us to make a connection between the streamfunction field and the underlying geometry of characteristics of the governing equation. In these cases characteristics are each seen to trace a purely periodic path. For most geometries, however, the BVP is non-separable and characteristics and therefore wave energy converge towards a limit cycle, referred to as an equatorial wave attractor. For Stern's model we compute exact solutions for wave attractor regimes. These solutions show that wave attractors correspond to singularities in the velocity field, indicating an infinite magnification of kinetic energy density along the attractor. The instability that arises occurs without the necessity of any ambient shear flow and is referred to as geometric instability.For application to ocean and atmosphere, Stern's model is extended to include uniform stratification. Owing to the stratification, characteristics are trapped near the equator by turning surfaces. Characteristics approach either equatorial wave attractors, or point attractors situated at the intersections of turning surfaces and the bottom. At these locations, trapped inertia–gravity waves are perceived as near-inertial oscillations. It is shown that trapping of inertia–gravity waves occurs for any monochromatic frequency within the allowed range, while equatorial wave attractors exist in a denumerable, infinite set of finite-sized continuous frequency intervals. It is also shown that the separable Stern equation, obtained as an approximate equation for waves in a homogeneous fluid confined to the equatorial part of a spherical shell, gives an exact description for buoyancy waves in uniformly but radially stratified fluids in such shells.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3