The influence of coherent structures and microfronts on scaling laws using global and local transforms

Author:

Mahrt L.,Howell J. F.

Abstract

This study examines the influence of coherent structures and attendant microfronts on scaling laws. Toward this goal, we analyse atmospheric observations of turbulence collected 45 m above a flat surface during the Lammefjord Experiment in Denmark. These observations represent more than 40 hours of nearly stationary strong wind conditions and include more than 1600 samples of the main coherent structures. These samples occupy about 40% of the total record and explain the majority of the Reynolds stress.To study the dependence of the scaling laws on the choice of basis set, the time series of velocity fluctuations are decomposed into Fourier modes, the local Haar basis set and eigenvectors of the lagged covariance matrix. The three decompositions are compared by formulating joint projections. The decompositions are first applied to the samples of phased-locked coherent structures centred about eddy microfronts. The eigenvector decomposition is able to partially separate the small-scale variances due to the coherent eddy microfronts from that due to the small-scale structure with random phase. In the Fourier spectrum, both of these contributions to the variance appear together at the higher wavenumbers and their individual contributions cannot be separated. This effect is relatively minor for the scale distribution of energy but exerts an important influence on higher-moment statistics. Deviations from the −$\frac53$ scaling are observed to be slight and depend on choice of basis set.The microfronts strongly influence the higher-order statistics such as the sixth-order structure function traditionally used to estimate the energy transfer variance. The intermittency of fine-scale structure, energy transfer variance and dissipation are not completely characterized by random phase, as often assumed, but are partly associated with microfronts characterized by systematic phase with respect to the main transporting eddies. These conclusions are supported by both the higher-order structure function and the higher-order Haar transform.The Fourier and Haar spectra are also computed for the entire record. The peak of the Haar energy spectrum occurs at smaller scales than those of the Fourier spectrum. The Haar transform is local and emphasizes the width of the events. The Fourier spectrum peaks at the scale of the main periodicity, if it exists, which includes the spacing between the events.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference51 articles.

1. Anselmet, F. , Gagne, Y. & Hopfinger, E. J. 1984 High-order velocity structure functions in turbulent shear flows.J. Fluid Mech. 140,63–89.

2. Lesieur, M. 1987 Turbulence in Fluids .Kluwer.

3. Yamada, M. & Ohkitani, K. 1990 Orthonormal wavelet expansion and its application to turbulence.Prog. Theor. Phys. 83,819–823.

4. Kuznetsov, V. R. , Praskovsky, A. A. & Sabelnikov, V. A. 1992 Fine-scale turbulence structure of intermittent shear flows.J. Fluid Mech. 243,595–622.

5. Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics , Vol. 1.Interscience.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3