On the instability of rapidly rotating shear flows to non-axisymmetric disturbances

Author:

Pedley T. J.

Abstract

The stability is considered of the flow with velocity components \[ \{0,\Omega r[1+O(\epsilon^2)],\;2\epsilon\Omega r_0f(r/r_0)\} \] (where f(x) is a function of order one) in cylindrical polar co-ordinates (r, ϕ, z), bounded by the rigid cylinders r/r0 = x1 and r/r0 = 1 (0 [les ] x1 < 1). When ε [Lt ] 1, the flow is shown to be unstable to non-axisymmetric inviscid disturbances of sufficiently large axial wavelength. The case of Poiseuille flow in a rotating pipe is considered in more detail, and the growth rate of the most rapidly growing disturbance is found to be 2εΩ.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference3 articles.

1. Watson, G. N. 1944 Theory of Bessel Functions ,2nd ed. Cambridge University Press.

2. Ludwieg, H. 1961 Z. Flugwiss. 9,359.

3. Howard, L. N. & Gupta, A. S. 1962 J. Fluid Mech. 14,463.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3