Shear flow of highly concentrated emulsions of deformable drops by numerical simulations

Author:

ZINCHENKO ALEXANDER Z.,DAVIS ROBERT H.

Abstract

An efficient algorithm for hydrodynamical interaction of many deformable drops subject to shear flow at small Reynolds numbers with triply periodic boundaries is developed. The algorithm, at each time step, is a hybrid of boundary-integral and economical multipole techniques, and scales practically linearly with the number of drops N in the range N < 1000, for NΔ ∼ 103 boundary elements per drop. A new near-singularity subtraction in the double layer overcomes the divergence of velocity iterations at high drop volume fractions c and substantial viscosity ratio γ. Extensive long-time simulations for N = 100–200 and NΔ = 1000–2000 are performed up to c = 0.55 and drop-to-medium viscosity ratios up to λ = 5, to calculate the non-dimensional emulsion viscosity μ* = Σ12/(μeγ˙), and the first N1 = (Σ11−Σ22)/(μe[mid ]γ˙[mid ]) and second N2 = (Σ22−Σ33)/(μe[mid ]γ˙[mid ]) normal stress differences, where γ˙ is the shear rate, μe is the matrix viscosity, and Σij is the average stress tensor. For c = 0.45 and 0.5, μ* is a strong function of the capillary number Ca = μe[mid ]γ˙[mid ]a/σ (where a is the non-deformed drop radius, and σ is the interfacial tension) for Ca [Lt ] 1, so that most of the shear thinning occurs for nearly non-deformed drops. For c = 0.55 and λ = 1, however, the results suggest phase transition to a partially ordered state at Ca [les ] 0.05, and μ* becomes a weaker function of c and Ca; using λ = 3 delays phase transition to smaller Ca. A positive first normal stress difference, N1, is a strong function of Ca; the second normal stress difference, N2, is always negative and is a relatively weak function of Ca. It is found at c = 0.5 that small systems (N ∼ 10) fail to predict the correct behaviour of the viscosity and can give particularly large errors for N1, while larger systems N [ges ] O(102)show very good convergence. For N ∼ 102 and NΔ ∼ 103, the present algorithm is two orders of magnitude faster than a standard boundary-integral code, which has made the calculations feasible.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3