Instability of optimal non-axisymmetric base-flow deviations in pipe Poiseuille flow

Author:

BEN-DOV GUY,COHEN JACOB

Abstract

The stability of pipe flow when mildly deviating from the developed Poiseuille profile by a non-axisymmetric azimuthally periodic distortion is examined. The motivation for this is to consider deviations, the origin of which may be attributed to small-amplitude disturbances having sinusoidal periodicity along the azimuthal coordinate, which are known to be the ones most amplified by the transient growth linear mechanism. A mathematical technique for finding the minimum energy density of azimuthally periodic deviations triggering exponential instability is presented. The results show that owing to bifurcations multiple solutions of optimal deviations exist. As the Reynolds number is increased additional bifurcations appear and create more distinct solutions. The different solutions correspond to different radial distributions of the deviations, and at Reynolds numbers of about 2000 they are distributed over less than a half of the pipe radius. It is found that the dependence of the optimal deviation velocity leading to instability on the Reynolds number Re is approximately 20/Re. A comparison to axisymmetric base-flow deviations shows that the minimum energy required for an azimuthally periodic deviation to trigger instability is almost twice that for the axisymmetric flow. However, azimuthally periodic deviations, which are shown to have a streaky pattern, may have a role in the self-sustaining process. They may be formed as a result of a transient growth amplification of initial streamwise rolls and can produce, via self-interactions between the resulting growing waves, patterns of streamwise rolls as well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3