Thermoacoustic heating and cooling in near-critical fluids in the presence of a thermal plume

Author:

ZAPPOLI BERNARD,JOUNET ARNAUD,AMIROUDINE SAKIR,MOJTABI ABDELKADER

Abstract

This work brings new insight to the question of heat transfer in near–critical fluids under Earth gravity conditions. The interplay between buoyant convection and thermoacoustic heat transfer (piston effect) is investigated in a two-dimensional non-insulated cavity containing a local heat source, to reproduce the conditions used in recent experiments. The results were obtained by means of a finite-volume numerical code solving the Navier–Stokes equations written for a low-heat-diffusing near-critical van der Waals fluid. They show that hydrodynamics greatly affects thermoacoustics in the vicinity of the upper thermostated wall, leading to a rather singular heat transfer mechanism. Heat losses through this wall govern a cooling piston effect. Thus, the thermal plume rising from the heat source triggers a strong enhancement of the cooling piston effect when it strikes the middle of the top boundary. During the spreading of the thermal plume, the cooling piston effect drives a rapid thermal quasi-equilibrium in the bulk fluid since it is further enhanced so as to balance the heating piston effect generated by the heat source. Then, homogeneous fluid heating is cancelled and the bulk temperature stops increasing. Moreover, diffusive and convective heat transfers into the bulk are very weak in such a low-heat-diffusing fluid. Thus, even though a steady state is not obtained owing to the strong and seemingly continuous instabilities present in the flow, the bulk temperature is expected to remain quasi-constant. Comparisons performed with a supercritical fluid at initial conditions further from the critical point show that this thermalization process is peculiar to near-critical fluids. Even enhanced by the thermal plume, the cooling piston effect does not balance the heating piston effect. Thus, overall piston-effect heating lasts much longer, while convection and diffusion progressively affect the thermal field much more significantly. Ultimately, a classical two-roll convective-diffusive structure is obtained in a perfect gas, without thermoacoustic heat transfer playing any role.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3