Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow

Author:

DERKSEN J. J.,LARSEN R. A.

Abstract

Direct numerical simulations of the shear flow over assemblies of uniformly sized, solid spheres attached to a flat wall have been performed using the lattice-Boltzmann method. The random sphere assemblies comprised monolayers, double layers and triple layers. The Reynolds number based on the sphere radius and the overall shear rate was much smaller than 1. The results were interpreted in terms of the drag force (the force in the streamwise direction) and lift force (the force in the wall-normal direction) experienced by the spheres as a function of the denseness of the bed and the depth of the spheres in the bed. The average drag and lift forces decay monotonically as a function of the surface coverage of the spheres in the top layer of the bed. The sphere-to-sphere variation of the drag and lift forces is significant due to interactions between spheres via the interstitial fluid flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3