Resonant scattering of edge waves by longshore periodic topography

Author:

CHEN YONGZE,GUZA R. T.

Abstract

The resonant scattering of topographically trapped, low-mode progressive edge waves by longshore periodic topography is investigated using a multiple-scale expansion of the linear shallow water equations. Coupled evolution equations for the slowly varying amplitudes of incident and scattered edge waves are derived for small-amplitude, periodic depth perturbations superposed on a plane beach. In ‘single-wave scattering’, an incident edge wave is resonantly scattered into a single additional progressive edge wave having the same or different mode number (i.e. longshore wavenumber), and propagating in the same or opposite direction (forward and backward scattering, respectively), as the incident edge wave. Backscattering into the same mode number as the incident edge wave, the analogue of Bragg scattering of surface waves, is a special case. In ‘multi-wave scattering’, simultaneous forward and backward resonant scattering results in several (rather than only one) new progressive edge waves. Analytic solutions are obtained for single-wave scattering and for a special case of multi-wave scattering involving mode-0 and mode-1 edge waves, over perturbed depth regions of both finite and semi-infinite longshore extent. In single-wave backscattering with small (subcritical) detuning (i.e. departure from exact resonance), the incident and backscattered wave amplitudes both decay exponentially with propagation distance over the periodic bathymetry, whereas with large (supercritical) detuning the amplitudes oscillate with distance. In single-wave forward scattering, the wave amplitudes are oscillatory regardless of the magnitude of the detuning. Multi-wave solutions combine aspects of single-wave backward and forward scattering. In both single- and multi-wave scattering, the exponential decay rates and oscillatory wavenumbers of the edge wave amplitudes depend on the detuning. The results suggest that naturally occurring rhythmic features such as beach cusps and crescentic bars are sometimes of large enough amplitude to scatter a significant amount of incident low-mode edge wave energy in a relatively short distance (O(10) topographic wavelengths).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Waves;Reference Module in Earth Systems and Environmental Sciences;2021

2. 10.3 Waves;Treatise on Geomorphology;2013

3. Vortical surf zone velocity fluctuations with 0(10) min period;Journal of Geophysical Research;2010-06-10

4. Modelling infragravity motions on a rip-channel beach;Coastal Engineering;2006-02

5. Morphodynamic instabilities of planar beaches: Sensitivity to parameter values and process formulations;Journal of Geophysical Research: Earth Surface;2005-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3