Numerical simulations of large-amplitude internal solitary waves

Author:

TEREZ DMITRY E.,KNIO OMAR M.

Abstract

A numerical model based on the incompressible two-dimensional Navier–Stokes equations in the Boussinesq approximation is used to study mode-2 internal solitary waves propagating on a pycnocline between two deep layers of different densities. Numerical experiments on the collapse of an initially mixed region reveal a train of solitary waves with the largest leading wave enclosing an intrusional ‘bulge’. The waves gradually decay as they propagate along the horizontal direction, with a corresponding reduction in the size of the bulge. When the normalized wave amplitude, a, falls below the critical value ac=1.18, the wave is no longer able to transport mixed fluid as it propagates away from the mixed region, and a sharp-nosed intrusion is left behind. The wave structure is studied using a Lagrangian particle tracking scheme which shows that for small amplitudes the bulges have a well-defined elliptic shape. At larger amplitudes, the bulge entrains and mixes fluid from the outside while instabilities develop in the rear part of the bulge. Results are obtained for different wave amplitudes ranging from small-amplitude ‘regular’ waves with a=0.7 to highly nonlinear unstable waves with a=3.8. The dependence of the wave speed and wavelength on amplitude is measured and compared with available experimental data and theoretical predictions. Consistent with experiments, the wave speed increases almost linearly with amplitude at small values of a. As a becomes large, the wave speed increases with amplitude at a smaller rate, which gradually approaches the asymptotic limit for a two-fluid model. Results show that in the parameter range considered the wave amplitude decreases linearly with time at a rate inversely proportional to the Reynolds number. Numerical experiments are also conducted on the head-on collision of solitary waves. The simulations indicate that the waves experience a negative phase shift during the collision, in accordance with experimental observations. Computations are used to determine the dependence of the phase shift on the wave amplitude.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3