Momentum transport by gravity waves in a perfectly conducting shear flow

Author:

Rudraiah N.,Venkatachalappa M.

Abstract

Alfvén-gravitational waves propagating in a Boussinesq, inviscid, adiabatic, perfectly conducting fluid in the presence of a uniform aligned magnetic field in which the mean horizontal velocityU(z)depends on heightzonly are considered. The governing wave equation has three singularities, at the Doppler-shifted frequencies Ωd= 0, ± ΩA, where ΩAis the Alfvén frequency. Hence the effect of the Lorentz force is to introduce two more critical levels, called hydromagnetic critical levels, in addition to the hydrodynamic critical level. To study the influence of magnetic field on the attenuation of waves two situations, one concerning waves far away from the critical levels (i.e. Ωd[Gt ] ΩA) and the other waves at moderate distances from the critical levels (i.e. Ωd> ΩA), are investigated. In the former case, if the hydrodynamic Richardson numberJHexceeds one quarter the waves are attenuated by a factor exp{−2π(JH−¼)½} as they pass through the hydromagnetic critical levels, at which Ωd= ± ΩA, and momentum is transferred to the mean flow there. Whereas in the case of waves at moderate distances from the critical levels the ratio of momentum fluxes on either side of the hydromagnetic critical levels differ by a factor exp {−2π(J−¼)½}, whereJ(> ¼) is the algebraic sum of hydrodynamic and hydromagnetic Richardson numbers. Thus the solutions to the hydromagnetic system approach asymptotically those of the hydrodynamic system sufficiently far on either side of the magnetic critical layers, though their behaviour in the vicinity of such levels is quite dissimilar. There is no attenuation and momentum transfer to the mean flow across the hydrodynamic critical level, at which Ωd= 0. The general theory is applied to a particular problem of flow over a sinusoidal corrugation. This is significant in considering the propagation of Alfvén-gravity waves, in the presence of a geomagnetic field, from troposphere to ionosphere.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Rudraiah, N. & Venkatachalappa, M. 1972b J. Fluid Mech. 54,209.

2. Narayan, C. L. 1972 Ph.D. thesis,Bangalore University.

3. Taylor, G. I. 1931 Proc. Roy. Soc. A,132,499.

4. Bretherton, F. P. , Hazel, P. , Thorpe, S. A. & Wood, I. R. 1967 Appendix to ‘The effect of viscosity and heat conduction of internal gravity waves at a critical level’, by P, Hazel.J. Fluid Mech. 30,781.

5. Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Tables .Dover.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3