Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium

Author:

ATTINGER S.,DENTZ M.,KINZELBACH H.,KINZELBACH W.

Abstract

In this paper we investigate the temporal behaviour of a solute cloud in a heterogeneous porous medium using a stochastic modelling approach. The behaviour of the plume evolving from a point-like instantaneous injection is characterized by the velocity of its centre-of-mass and by its dispersion as a function of time. In a stochastic approach, these quantities are expressed as appropriate averages over the ensemble of all possible realizations of the medium. We develop a general perturbation approach which allows one to calculate the various quantities in a systematic and unified way. We demonstrate this approach on a simplified aquifer model where only the retardation factor R(x) due to linear instantaneous chemical adsorption varies stochastically in space. We analyse the resulting centre-of-mass velocity and two conceptually different definitions for the dispersion coefficient: the ‘effective’ dispersion coefficient which is derived from the average over the centred second moments of the spatial concentration distributions in every realization, and the ‘ensemble’ dispersion coefficient which follows from the second moment of the averaged concentration distribution. The first quantity characterizes the dispersion in a typical realization of the medium as a function of time, whereas the second one describes the (formal) dispersion properties of the ensemble as a whole. We show that for finite times the two quantities are not equivalent whereas they become identical for t→∞ and spatial dimensions d[ges ]2. The ensemble dispersion coefficient which is usually evaluated in the literature considerably overestimates the dispersion typically found in one given realization of the medium. We derive for the first time explicit analytical expressions for both quantities as functions of time. From these, we identify two relevant time scales separating regimes of qualitatively and quantitatively different temporal behaviour: the shorter of the two scales is set by the advective transport of the solute cloud over one disorder correlation length, whereas the second, much larger one, is related to the dispersive spreading over the same distance. Only for times much larger than this second scale, and spatial dimensions d[ges ]2, do the effective and the ensemble dispersion coefficients become equivalent due to mixing caused by the local transversal dispersion. Finally, the formalism is generalized to an extended source. With growing source size the convergence of the effective dispersion coefficient to the ensemble dispersion coefficient happens faster as the extended source already represents an ensemble of point sources. In the limit of a very large source size, convergence occurs on the time scale of advective transport over one disorder length. We derive explicit results for the temporal behaviour in the different time regimes for both point and extended sources.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3