Universal size and shape of viscous capillary jets: application to gas-focused microjets

Author:

GAÑÁN-CALVO A. M.,FERRERA C.,MONTANERO J. M.

Abstract

The size and shape of capillary microjets are analysed theoretically and experimentally. We focus on the particular case of gas-focused viscous microjets, which are shaped by both the pressure drop in the axial direction occurring in front of the discharge orifice, and the tangential viscous stress caused by the difference between the velocities of the co-flowing gas stream and liquid jet behind the orifice. The momentum equation obtained from the slender approximation reveals that the momentum injected into the jet in these two regions is proportional to the ratio of the pressure drop to the orifice diameter. Thus, the liquid-driving forces can be reduced to a single term in the momentum equation. Besides, the size and shape of gas-focused microjets were experimentally measured. The experiments indicated that the Weber number has a minor influence on the jet diameter for steady, stable jets, while both the axial coordinate and the Reynolds number affect its size significantly. When the experimental results are expressed in terms of conveniently scaled variables, one obtains a remarkable collapse of all measured jet diameters into a single curve. The curve matches a universal self-similar solution of the momentum equation for a constant driving force, first calculated by Clarke (Mathematika, vol. 12, 1966, p. 51) and not yet exploited in the field of steady tip-streaming flows, such as flow focusing and electrospray. This result shows that the driving force or motor mentioned above attains a rather homogeneous value at the region where the gas-focused microjet develops. The approach used in this work can also be applied to study other varied microjet generation means (e.g. co-flowing, electrospray and electrospinning).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Governing Equations;Fluid Mechanics and Its Applications;2024

2. Gaseous Flow Focusing I;Fluid Mechanics and Its Applications;2024

3. Parametric study on breakup of liquid jet in a gas-driven flow focusing process upon external excitation;Physics of Fluids;2022-04

4. Transonic flow focusing: stability analysis and jet diameter;International Journal of Multiphase Flow;2021-09

5. Co‐Axial Gyro‐Spinning of PCL/PVA/HA Core‐Sheath Fibrous Scaffolds for Bone Tissue Engineering;Macromolecular Bioscience;2021-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3