Steady three-dimensional water-wave patterns on a finite-depth fluid

Author:

BRIDGES T. J.,DIAS F.,MENASCE D.

Abstract

The formation of doubly-periodic patterns on the surface of a fluid layer with a uniform velocity field and constant depth is considered. The fluid is assumed to be inviscid and the flow irrotational. The problem of steady patterns is shown to have a novel variational formulation, which includes a new characterization of steady uniform mean flow, and steady uniform flow coupled with steady doubly periodic patterns. A central observation is that mean flow can be characterized geometrically by associating it with symmetries. The theory gives precise information about the role of the ten natural parameters in the problem which govern the wave–mean flow interaction for steady patterns in finite depth. The formulation is applied to the problem of interaction of capillary–gravity short-crested waves with oblique travelling waves, leading to several new observations for this class of waves. Moreover, by including oblique travelling waves and short-crested waves in the same analysis, new bifurcations of short-crested waves are found, which give rise to mixed waves which may have complicated spatial structure.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soliton-like structures on a water-ice interface;Russian Mathematical Surveys;2015-12-31

2. Gravity Capillary Standing Water Waves;Archive for Rational Mechanics and Analysis;2015-02-12

3. A new equation describing travelling water waves;Journal of Fluid Mechanics;2013-02-01

4. Overdetermined shooting methods for computing standing water waves with spectral accuracy;Computational Science & Discovery;2012-12-19

5. Asymmetrical Three-Dimensional Travelling Gravity Waves;Archive for Rational Mechanics and Analysis;2010-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3