Author:
DEVAUCHELLE OLIVIER,JOSSERAND CHRISTOPHE,ZALESKI STEPHANE
Abstract
We study the dewetting of a porous plate withdrawn from a liquid bath. The contact angle is fixed to zero and the flow is assumed to be almost parallel to the plate (lubrication approximation). The ordinary differential equation involving the position of the water surface is analysed in phase space by means of numerical integration. We show the existence of a stationary moving contact line with zero contact angle below a critical value of the capillary number η U/γ. Above this value, no stationary contact line can exist. An analytical model, based on asymptotic matching is developed, which reproduces the dependence of the critical capillary number on the angle of the plate with respect to the horizontal (3/2 power law), provided the capillary length is much larger than the square root of the porous-medium permeability. In addition, it is shown that the classical lubrication equation leads not only to the well-known Landau–Levich–Derjaguin films, but also to a family of films for which thickness is not imposed by the problem parameters.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献