Small-scale characteristics of a turbulent boundary layer over a rough wall

Author:

SHAFI H. S.,ANTONIA R. A.

Abstract

Measurements of the spanwise and wall-normal components of vorticity and their constituent velocity derivative fluctuations have been made in a turbulent boundary layer over a mesh-screen rough wall using a four-hot-wire vorticity probe. The measured spectra and variances of vorticity and velocity derivatives have been corrected for the effect of spatial resolution. The high-wavenumber behaviour of the spectra conforms closely with isotropy. Over most of the outer layer, the normalized magnitudes of the velocity derivative variances differ significantly from those over a smooth wall layer. The differences are such that the variances are much more nearly isotropic over the rough wall than on the smooth wall. This behaviour is consistent with earlier observations that the large-scale structure in this rough wall layer is more isotropic than that in a smooth wall layer. Isotropy-based approximations for the mean energy dissipation rate and mean enstrophy are consequently more reliable in this rough wall layer than in a smooth wall layer. In the outer layer, the vorticity variances are slightly larger than those over a smooth wall; reflecting structural differences between the two flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3