Peristaltic pumping of rigid objects in an elastic tube

Author:

TAKAGI D.,BALMFORTH N. J.

Abstract

A mathematical model is developed for long peristaltic waves propelling a suspended rigid object down a fluid-filled axisymmetric tube. The fluid flow is described using lubrication theory and the deformation of the tube using linear elasticity. The object is taken to be either an infinitely long rod of constant radius or a parabolic-shaped lozenge of finite length. The system is driven by a radial force imposed on the tube wall that translates at constant speed down the tube axis and with a form chosen to generate a periodic wave train or a solitary wave. These waves exert a traction on the enclosed object, forcing it into motion. Periodic waves drive the infinite rod at a speed that attains a maximum at a moderate forcing amplitude and approaches approximately one quarter of the wave speed in the large-amplitude limit. The finite lozenge can be entrained and driven at the same speed as a solitary wave or periodic wave train if the forcing is sufficiently strong. For weaker forcing, the lozenge is either left behind the solitary wave or interacts repeatedly with the waves in the periodic train to generate stuttering forward progress. The threshold forcing amplitude for entrainment increases weakly with the radial span of the enclosed object, but strongly with the axial length, with entrainment becoming impossible if the object is too long.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peristaltic pumping down a porous conduit;Journal of Fluid Mechanics;2024-05-17

2. Fluid-Elastic Interactions Near Contact at Low Reynolds Number;Annual Review of Fluid Mechanics;2024-01-19

3. Bifurcations of streamlines in peristaltic flow without lubrication approximation: A case study;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2023-09-11

4. Biological analysis of emerging nanoparticles with blood through propagating flow along a plumb porous canal in the occurrence of energy and heat transfer;Surfaces and Interfaces;2023-08

5. Shape Optimization of Peristaltic Pumps Transporting Rigid Particles in Stokes Flow;SIAM Journal on Scientific Computing;2023-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3