Abstract
A considerable quantity of observations and measurements exists concerning the phenomenon of intermittency which is connected closely with the entrainment process in free turbulent flows. A number of these are described in the first part of the paper and conclusions are drawn about the shape and motion of the bounding surface that separates turbulent and non-turbulent fluid. The salient features are that indentations of the surface grow and decay cyclically, that each cycle leads to substantial entrainment of ambient fluid into the turbulent region, that the indentations move at a considerable speed relative to the free stream, and that the surface has a comparatively simple form. The growth–decay cycle of the indentations suggests that a critical condition for growth exists, but the pressure field consequent on the convection velocity of the indentations makes for a Helmholtz type of instability that is unlikely to be stabilized by purely viscous behaviour of the turbulent fluid. It is known that the initial response of turbulent fluid to distortion is elastic in character, with incremental Reynolds stress proportional to increment of total strain, and sufficient rigidity could stabilize the bounding surface. A simple flow model–an inviscid stream flowing over an elastic jelly—is examined and the condition for marginal stability is compared with the observed properties of the flow. The model leads to the conclusion that indentations of more than a critical wave-number are stable, and provides reasons for the comparatively simple form of the surface and for the occurrence of indentations in groups of about three. The relative values of entrainment constants in different flows of uniform density do not depend critically on the nature of the entrainment process provided that the main turbulent motion remains geometrically similar, but the correlation between entrainment constant and relative depth of the indentations found by Gartshore (1966) appears as a consequence of the ‘elastic’ control of the growth–decay cycle. Lastly, the properties of the engulfment mechanism are used to show that the entrainment constant for a jet is proportional to the square root of the ratio of ambient density to the average density inside the jet. In contrast, the corresponding result for engulfment controlled by an eddy viscosity is variation as the ratio of the mean of the ambient and inside density to the inside density. Observations of high-speed jets of water in air and air in water give some support to the ‘elastic’ hypothesis.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference22 articles.
1. Franklin, R. E. & Foxwell, J. H. 1958b Aero. Res. Counc. (London) R. & M. no. 3162.
2. Bradbury, L. J. S. 1965 J. Fluid Mech. 23,3.
3. Gartshore, I. S. 1966 J. Fluid Mech. 24,8.
4. Phillips, O. M. 1955 Proc. Camb. Phil. Soc. 51,22.
5. Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence .Cambridge University Press.
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献