Inhomogeneity and anisotropy effects on the redistribution term in Reynolds-averaged Navier–Stokes modelling

Author:

MANCEAU RÉMI,WANG MENG,LAURENCE DOMINIQUE

Abstract

A channel flow DNS database at Reτ = 590 is used to assess the validity of modelling the redistribution term in the Reynolds stress transport equations by elliptic relaxation. The model assumptions are found to be globally consistent with the data. However, the correlation function between the fluctuating velocity and the Laplacian of the pressure gradient, which enters the integral equation of the redistribution term, is shown to be anisotropic. It is elongated in the streamwise direction and strongly asymmetric in the direction normal to the wall, in contrast to the isotropic, exponential model representation used in the original elliptic relaxation model. This discrepancy is the main cause of the slight amplification of the energy redistribution in the log layer as predicted by the elliptic relaxation equation. New formulations of the model are proposed in order to correct this spurious behaviour, by accounting for the rapid variations of the length scale and the asymmetrical shape of the correlation function. These formulations do not rely on the use of so-called ‘wall echo’ correction terms to damp the redistribution. The belief that the damping is due to the wall echo effect is called into question through the present DNS analysis.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3