Statistical features of heat transfer in grid-generated turbulence: constant-gradient case

Author:

Venkataramani K. S.,Chevray R.

Abstract

Turbulence produced by a grid which simultaneously imparts a mean temperature profile varying linearly with height was investigated in a specially constructed wind tunnel. While the mean temperature profile is preserved downstream of the grid in accordance with the theory of Corrsin (1952), the downstream evolution of the r.m.s. temperature fluctuation is at variance with his prediction. The reason for this discrepancy is shown to lie in the neglect of molecular diffusivity, which leads to unbounded growth of the fluctuations. Along with conventional correlations and spectra, the filtered heat-transfer correlation is presented. About 60% of the heat transport is accomplished by the low wavenumber components having length scales equal to or larger than the integral scale. An intriguing feature of the present experiments is the presence of an inertial-convective subrange for the temperature field notwithstanding the low Reynolds number and the consequent absence of an inertial subrange for the velocity field. Experimental results show that the temperature has a positive skewness everywhere in contrast to the velocity components, which are symmetrically distributed. Measurements of the joint probability density function of the vertical component of the velocity and the temperature indicate that, while the assumption of joint normality is not uniformly valid, the conditional expectations nearly follow the normal law. Marginal and joint moments of up to fourth order are presented. Odd-order joint moments are clearly sensitive to the skewness of the temperature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3