Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid

Author:

TAKEMURA FUMIO,TAKAGI SHU,MAGNAUDET JACQUES,MATSUMOTO YOICHIRO

Abstract

The two components of the force acting on a clean almost spherical bubble rising near a plane vertical wall in a quiescent liquid are determined experimentally. This is achieved by using an apparatus in which a CCD camera and a microscope follow the rising bubble. This apparatus allows us to measure accurately the bubble radius, rise speed and distance between the bubble and the wall. Thereby the drag and lift components of the hydrodynamic force are determined for Reynolds numbers Re (based on bubble diameter, rise velocity U, and kinematic viscosity ν) less than 40. The results show the existence of two different regimes, according to the value of the dimensionless separation L* defined as the ratio between the distance from the bubble centre to the wall and the viscous length scale ν/U. When L* is O(1) or more, experimental results corresponding to Reynolds numbers up to unity are found to be in good agreement with an analytical solution obtained in the Oseen approximation by adapting the calculation of Vasseur & Cox (1977) to the case of an inviscid bubble. When L* is o(1), higher-order effects not taken into account in previous analytical investigations become important and measurements show that the deformation of the bubble is significant when the viscosity of the surrounding liquid is large enough. In this regime, experimental results for the drag force and shape of the bubble are found to agree well with recent theoretical predictions obtained by Magnaudet, Takagi & Legendre (2002) but the measured lift force tends to exceed the prediction as the separation decreases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3