Dynamics of a low Reynolds number turbulent boundary layer

Author:

CHACIN JUAN M.,CANTWELL BRIAN J.

Abstract

The generation of Reynolds stress, turbulent kinetic energy and dissipation in the turbulent boundary layer simulation of Spalart (1988) is studied using the invariants of the velocity gradient tensor. This technique enables the study of the whole range of scales in the flow using a single unified approach. In addition, it also provides a rational basis for relating the flow structure in physical space to an appropriate statistical measure in the space of invariants. The general characteristics of the turbulent motion are analysed using a combination of computer-based visualization of flow variables together with joint probability distributions of the invariants. The quantities studied are of direct interest in the development of turbulence models. The cubic discriminant of the velocity gradient tensor provides a useful marker for distinguishing regions of active and passive turbulence. It is found that the strongest Reynolds-stress and turbulent-kinetic-energy generating events occur where the discriminant has a rapid change of sign. Finally, the time evolution of the invariants is studied by computing along particle paths in a Lagrangian frame of reference. It is found that the invariants tend to evolve toward two distinct asymptotes in the plane of invariants. Several simplified models for the evolution of the velocity gradient tensor are described. These models compare well with several of the important features observed in the Lagrangian computation. The picture of the turbulent boundary layer which emerges is consistent with the ideas of Townsend (1956) and with the physical picture of turbulent structure set forth by Theodorsen (1955).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3