Flow in deformable porous media. Part 2 Numerical analysis – the relationship between shock waves and solitary waves

Author:

Spiegelman Marc

Abstract

Using numerical schemes, this paper demonstrates how viscous resistance to volume changes modifies the simplest shock wave solutions presented in Part 1. For an initial condition chosen to form a step-function shock, viscous resistance causes the shock to disperse into a rank-ordered wavetrain of solitary waves. Large obstructions in flux produce large-amplitude, slow-moving wavetrains while smaller shocks shed small-amplitude waves. While the viscous resistance term is initially important over a narrow boundary layer, information about obstructions in the flux can propagate over many compaction lengths through the formation of non-zero wavelength porosity waves. For large-amplitude shocks, information can actually propagate backwards relative to the matrix. The physics of dispersion is discussed and a physical argument is presented to parameterize the amplitude of the wavetrain as a function of the amplitude of the predicted shock. This quantitative relationship between the prediction of shocks and the development of solitary waves also holds when mass transfer between solid and liquid is included. Melting causes solitary waves to decrease in amplitude but the process is reversible and freezing can cause small perturbations in the fluid flux to amplify into large-amplitude waves. These model problems show that the equations governing volume changes of the matrix are inherently time dependent. Perturbations to steady-state solutions propagate as nonlinear waves and these problems demonstrate several initial conditions that do not relax to steady state. If these equations describe processes such as magma migration in the Earth, then these processes should be inherently episodic in space and time.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. McKenzie, D. 1984 The generation and compaction of partially molten rock.J. Petrol. 25,713–765.

2. Barcilon, V. & Richter, F. M. 1986 Non-linear waves in compacting media.J. Fluid Mech. 164,429–448.

3. Barcilon, V. & Lovera, O. 1989 Solitary waves in magma dynamics.J. Fluid Mech. 204,121–133.

4. Press, W. , Flannery, B. , Teukolsky, S. & Vertterling, W. 1986 Numerical Recipes .Cambridge University Press.

5. Olson, P. & Christensen, U. 1986 Solitary wave propagation in a fluid conduit within a viscous matrix.J. Geophys. Res. 91,6367–6374.

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3