The lift force on a spherical bubble in a viscous linear shear flow

Author:

LEGENDRE DOMINIQUE,MAGNAUDET JACQUES

Abstract

The three-dimensional flow around a spherical bubble moving steadily in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations. The bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-stress condition and does not induce any rotation of the bubble. The main goal of the present study is to provide a complete description of the lift force experienced by the bubble and of the mechanisms responsible for this force over a wide range of Reynolds number (0.1[les ]Re[les ]500, Re being based on the bubble diameter) and shear rate (0[les ]Sr[les ]1, Sr being the ratio between the velocity difference across the bubble and the relative velocity). For that purpose the structure of the flow field, the influence of the Reynolds number on the streamwise vorticity field and the distribution of the tangential velocities at the surface of the bubble are first studied in detail. It is shown that the latter distribution which plays a central role in the production of the lift force is dramatically dependent on viscous effects. The numerical results concerning the lift coefficient reveal very different behaviours at low and high Reynolds numbers. These two asymptotic regimes shed light on the respective roles played by the vorticity produced at the bubble surface and by that contained in the undisturbed flow. At low Reynolds number it is found that the lift coefficient depends strongly on both the Reynolds number and the shear rate. In contrast, for moderate to high Reynolds numbers these dependences are found to be very weak. The numerical values obtained for the lift coefficient agree very well with available asymptotic results in the low- and high-Reynolds-number limits. The range of validity of these asymptotic solutions is specified by varying the characteristic parameters of the problem and examining the corresponding evolution of the lift coefficient. The numerical results are also used for obtaining empirical correlations useful for practical calculations at finite Reynolds number. The transient behaviour of the lift force is then examined. It is found that, starting from the undisturbed flow, the value of the lift force at short time differs from its steady value, even when the Reynolds number is high, because the vorticity field needs a finite time to reach its steady distribution. This finding is confirmed by an analytical derivation of the initial value of the lift coefficient in an inviscid shear flow. Finally, a specific investigation of the evolution of the lift and drag coefficients with the shear rate at high Reynolds number is carried out. It is found that when the shear rate becomes large, i.e. Sr=O(1), a small but consistent decrease of the lift coefficient occurs while a very significant increase of the drag coefficient, essentially produced by the modifications of the pressure distribution, is observed. Some of the foregoing results are used to show that the well-known equality between the added mass coefficient and the lift coefficient holds only in the limit of weak shears and nearly steady flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3