The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices

Author:

Lin S. J.,Corcos G. M.

Abstract

in hydrodynamic turbulencethe fate of vortices extending in the direction of motion is of great importance (J. M. Burgers 1948).We examine an elementary model of the dynamics of streamwise vorticity in a plane mixing layer. We assume that the vorticity is unidirectional and subjected to a two-dimensional spatially uniform strain, positive along the direction of vorticity. The equations of motion are solved numerically with initial conditions corresponding to a strain-viscous-diffusion balance for a layer with a sinusoidal variation of vorticity. The numerical results are interpreted physically and compared to those of an asymptotic analysis of the same problem by Neu. It is found that strained vortex sheets are fundamentally unstable unless their local strength nowhere exceeds a constant (somewhat larger than 2) times the square root of the product of strain and viscosity. The instability manifests itself by the spanwise redistribution of the vorticity towards the regions of maximum strength. This is accompanied by the local rotation of the layer and the intensification of the vorticity. The end result of this evolution is a set of discrete round vortices whose structure is well approximated by that of axially symmetric vortices in an axially symmetric strain. The phenomenon can proceed (possibly simultaneously) on two separate lengthscales and with two correspondingly different timescales. The first lengthscale is the initial spanwise extent of vorticity of a given sign. The second, relevant to initially thin and spanwise slowly varying vortex layers, is proportional to the layer thickness. The two types of vorticity focusing or collapse are studied separately. The effect of the first on the diffusion rate of a scalar across the layer is calculated. The second is examined in detail for a spanwise-uniform layer: First we solve the eigenvalue problem for infinitesimal perturbations and then use the eigenfunctions as initial conditions for a numerical finite-differences solution. We find that the initial instability is similar to that of unstrained layers, in that roll-up and pairings also follow. However, at each stage a strain-diffusion balance eventually imposes the same cross-sectional lengthscale and each of these events leads to an intensification of the local value of the vorticity.The parameters upon which collapse and its timescale depend are related to those which are known to govern a mixing layer. The results suggest that the conditions for collapse of strained vortex sheets into concentrated round vortices are easily met in a mixing layer, even at low Reynolds numbers, so that these structures whose size is the Taylor microscale are far more plausibly typical than are vortex sheets on that scale. We found that they raise significantly the diffusion rate of scalar attributes by enhancing the rate of growth of material surfaces across which diffusion takes place. Finally, experimental methods that rely on the visualization of the gradient of scalar concentration are shown to be unable to reveal the presence of streamwise vorticity unless that vorticity has already gathered into concentrated vortex tubes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. Neu, J. 1984a The dynamics of a columnar vortex in an imposed strain. Submitted toPhys. Fluids.

2. Couët, B. & Leonard, A. 1980 Mixing layer simulation by an improved three-dimensional vortex-in-cell algorithm. In Proc. 7th Intl Conf. on Numerical Methods in Fluid Dynamics, Stanford-Ames.

3. Patnaik, P. C. , Sherman, F. S. & Corcos, G. M. 1976 A numerical solution of Kelvin-Helmholtz waves of finite amplitude.J. Fluid Mech. 73,215.

4. Konrad, D. H. 1977 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. thesis,Calif. Inst. Tech. (also Project Squid Tech. Rep. CIT-8-PU, Dec. 1976).

5. Bracket, M. E. & Orszag, S. 1982 Secondary instability of free shear layer flows. Submitted toJ. Fluid Mech.

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3