Structure and energetics of optimal Ekman layer perturbations

Author:

FOSTER RALPH C.

Abstract

The optimal non-modal perturbations for the neutrally stratified boundary layer in a rotating frame of reference (Ekman layer) are found for a Reynolds number characteristic of the planetary boundary layer (PBL). Two classes of non-modal instabilities are found: evanescent perturbations, with lifetimes up to about one hour, and growing instabilities. The important difference between these types of perturbations is whether or not the optimal non-modal perturbation projects onto an unstable normal mode. The evanescent instabilities are of smaller scale and are oriented at larger angles to the surface isobars compared to either the growing perturbations or normal-mode instabilities. The optimal perturbations take the form of vortices at an acute angle to the geostrophic flow that rapidly transform into streaks with associated overturning motion. The energetics of the optimal perturbations are investigated in detail to clarify the instability mechanism throughout its evolution.Nonlinear stability analyses of the neutrally stratified Ekman layer have shown that the normal-mode instability will equilibrate with the mean flow to form boundary-layer-scale equilibrium roll eddies aligned closely with the geostrophic flow. However, numerical simulations do not generate these rolls in neutral stratification although they often realize small-scale near-surface streaks oriented at large angles to the geostrophic wind. The evanescent optimal perturbations bear a close resemblance to the simulated streaks. It is proposed that the non-model perturbation mechanism is associated with the streaks.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3