Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory

Author:

Batchelor G. K.

Abstract

Small rigid spherical partials are settling under gravity through Newtonian fluid, and the volume fraction of the particles (ϕ) is small although sufficiently large for the effects of interactions between pairs of particles to be significant. Two neighbouring particles interact both hydrodynamically (with low-Reynolds-number flow about each particle) and through the exertion of a mutual force of molecular or electrical origin which is mainly repulsive; and they also diffuse relatively to each other by Brownian motion. The dispersion contains several species of particle which differ in radius and density.The purpose of the paper is to derive formulae for the mean velocity of the particles of each species correct to order ϕ, that is, with allowance for the effect of pair interactions. The method devised for the calculation of the mean velocity in a monodisperse system (Batchelor 1972) is first generalized to give the mean additional velocity of a particle of species i due to the presence of a particle of species j in terms of the pair mobility functions and the probability distribution pii(r) for the relative position of an i and a j particle. The second step is to determine pij(r) from a differential equation of Fokker-Planck type representing the effects of relative motion of the two particles due to gravity, the interparticle force, and Brownian diffusion. The solution of this equation is investigated for a range of special conditions, including large values of the Péclet number (negligible effect of Brownian motion); small values of the Ptclet number; and extreme values of the ratio of the radii of the two spheres. There are found to be three different limits for pij(r) corresponding to different ways of approaching the state of equal sphere radii, equal sphere densities, and zero Brownian relative diffusivity.Consideration of the effect of relative diffusion on the pair-distribution function shows the existence of an effective interactive force between the two particles and consequently a contribution to the mean velocity of the particles of each species. The direct contributions to the mean velocity of particles of one species due to Brownian diffusion and to the interparticle force are non-zero whenever the pair-distribution function is non-isotropic, that is, at all except large values of the Péclet number.The forms taken by the expression for the mean velocity of the particles of one species in the various cases listed above are examined. Numerical values will be presented in Part 2.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction.J. Fluid Mech. 74,1–29.

2. Adler, P. M. 1981 Interaction of unequal spheres. I. Hydrodynamic interaction. Colloidal forces.J. Colloid Interface Sci. 84,461–474.

3. Batchelor, G. K. 1982 Diffusion in a polydisperse system. J. Fluid Mech . (submitted).

4. Haber, S. & Hetsroni, G. 1981 Sedimentation in a dilute dispersion of small drops of various sizes.J. Colloid Interface Sci. 79,56–75.

5. Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres.J. Fluid Mech. 52,245–268.

Cited by 421 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3