Numerical simulation of the fluid dynamic effects of laser energy deposition in air

Author:

GHOSH SHANKAR,MAHESH KRISHNAN

Abstract

Numerical simulations of laser energy deposition in air are conducted. Local thermodynamic equilibrium conditions are assumed to apply. Variation of the thermodynamic and transport properties with temperature and pressure are accounted for. The flow field is classified into three phases: shock formation; shock propagation; and subsequent collapse of the plasma core. Each phase is studied in detail. Vorticity generation in the flow is described for short and long times. At short times, vorticity is found to be generated by baroclinic means. At longer times, a reverse flow is found to be generated along the plasma axis resulting in the rolling up of the flow field near the plasma core and enhancement of the vorticity field. Scaling analysis is performed for different amounts of laser energy deposited and different Reynolds numbers of the flow. Simulations are conducted using three different models for air based on different levels of physical complexity. The impact of these models on the evolution of the flow field is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3