Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations

Author:

TANAKA MITSUHIRO

Abstract

The temporal evolution of nonlinear wave fields of surface gravity waves is studied by large-scale direct numerical simulations of primitive equations in order to verify Hasselmann's theory for nonlinear energy transfer among component gravity waves. In the simulations, all the nonlinear interactions, including both resonant and non-resonant ones, are taken into account up to the four-wave processes. The initial wave field is constructed by combining more than two million component free waves in such a way that it has the JONSWAP or the Pierson–Moskowitz spectrum. The nonlinear energy transfer is evaluated from the rate of change of the spectrum, and is compared with Hasselmann's theory. It is shown that, in spite of apparently insufficient duration of the simulations such as just a few tens of characteristic periods, the energy transfer obtained by the present method shows satisfactory agreement with Hasselmann's theory, at least in their qualitative features.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3