The unstable thermal interface

Author:

Elder J. W.

Abstract

The motion which develops in a deep layer of a viscous, thermally conducting fluid initially hot below and cold above some horizontal plane, so that the system is gravitationally unstable, is studied by laboratory and numerical experiments. Three cases are considered: (i) the flow which occurs in a porous medium when the interface is the lower boundary of the system; (ii) a similar study in a viscous fluid; (iii) an interface distant from the confining horizontal boundaries, in a viscous fluid. In all cases the initial development of the flow—assuming an initial source of noise, for example as temperature fluctuations—occurs within the thermal interface between the hot and cold fluid. The scale of the motion is set by the thickness of the interface.The development of the disturbances in the interface involves: a period of local thickening and induced, damped motions in which the diffusion of heat and vorticity dominate; a period of gestation, involving rapid amplification, with the disturbance imbedded in the interface and diminishing importance of the role of diffusion of heat; a period of emergence of the disturbances from the interface, during which the accelerations are sufficiently rapid for molecular processes to be unimportant, entrainment being the dominant process, and the gravitational energy accumulated locally in the interface is largely removed; and finally a period of adjustment of the large eddies. The amplification process is adequately described by the linearized equations of motion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Spiegel, E. A. 1965 Proc. 5th Cosmical Gas Dynamics Symposium, Nice.

2. Malkus, W. V. R. 1954 Proc. Roy. Soc. A, 225, 196.

3. Rayleigh, LORD 1916 Scientific Papers, 6, 432. Cambridge University Press.

4. Herring, J. 1964 J. Atm. Sci. 21, 277.

5. Foster, T. D. 1965a Phys. Fluids, 8, 1770.

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3