Miscible displacements in capillary tubes. Part 2. Numerical simulations

Author:

Chen Ching-Yao,Meiburg Eckart

Abstract

Numerical simulations are presented which, in conjunction with the accompanying experimental investigation by Petitjeans & Maxworthy (1996), are intended to elucidate the miscible flow that is generated if a fluid of given viscosity and density displaces a second fluid of different such properties in a capillary tube or plane channel. The global features of the flow, such as the fraction of the displaced fluid left behind on the tube walls, are largely controlled by dimensionless quantities in the form of a Péclet number Pe, an Atwood number At, and a gravity parameter. However, further dimensionless parameters that arise from the dependence on the concentration of various physical properties, such as viscosity and the diffusion coefficient, result in significant effects as well.The simulations identify two distinct Pe regimes, separated by a transitional region. For large values of Pe, typically above O(10), a quasi-steady finger forms, which persists for a time of O(Pe) before it starts to decay, and Poiseuille flow and Taylor dispersion are approached asymptotically. Depending on the strength of the gravitational forces, we observe a variety of topologically different streamline patterns, among them some that leak fluid from the finger tip and others with toroidal recirculation regions inside the finger. Simulations that account for the experimentally observed dependence of the diffusion coefficient on the concentration show the evolution of fingers that combine steep external concentration layers with smooth concentration fields on the inside. In the small-Pe regime, the flow decays from the start and asymptotically reaches Taylor dispersion after a time of O(Pe).An attempt was made to evaluate the importance of the Korteweg stresses and the consequences of assuming a divergence-free velocity field. Scaling arguments indicate that these effects should be strongest when steep concentration fronts exist, i.e. at large values of Pe and At. However, when compared to the viscous stresses, Korteweg stresses may be relatively more important at lower values of these parameters, and we cannot exclude the possibility that minor discrepancies observed between simulations and experiments in these parameter regimes are partially due to these extra stresses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Horne, R. H. & Rodriguez, F. 1983 Dispersion in tracer flow in fractured geothermal systems.Geophys. Res. Lett. 10,289.

2. Rogerson, A. M. & Meiburg, E. 1993b Numerical simulation of miscible displacementprocesses in porous media flows under gravity.Phys. Fluids A5,2644.

3. Rakotomalala, N. , Salin, D. & Watzky, P. 1996 Miscible displacement between two parallel plates: BGK Lattice gas simulations. Submitted toJ. Fluid Mech.

4. Joseph, D. D. & Hu, H. 1991 Interfacial tension between miscible liquids.Army High Performance Computing Research Centre, University of Minnesota, preprint 91-58.

5. Joseph, D. D. 1990 Fluid dynamics of two miscible liquids with diffusion and gradient stresses. Eur. J. Mech. B/Fluids 9,565.

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3