Stokes flow through periodic orifices in a channel

Author:

Zeng Y.,Weinbaum S.

Abstract

This paper develops a three-dimensional infinite series solution for the Stokes flow through a parallel walled channel which is obstructed by a thin planar barrier with periodically spaced rectangular orifices of arbitrary aspect ratio B’/d’ and spacing D’. Here B’ is the half-height of the channel and d’ is the half-width of the orifice. The problem is motivated by recent electron microscopic studies of the intercellular channel between vascular endothelial cells which show a thin junction strand barrier with discontinuities or breaks whose spacing and width vary with the tissue. The solution for this flow is constructed as a superposition of Hasimoto's (1958) general solution for the two-dimensional flow through a periodic slit array in an infinite plane wall and a new three-dimensional solution which corrects for the top and bottom boundaries. In contrast to the well-known solutions of Sampson (1891) and Hasimoto (1958) for the flow through zero-thickness orifices of circular or elliptic cross-section or periodic slits in an infinite plane wall, which exhibit characteristic viscous velocity profiles, the present bounded solutions undergo a fascinating change in behaviour as the aspect ratio B’/d’ of the orifice opening is increased. For B’/d’ [Lt ] 1 and (D’ –- d’)/B’ of O(1) or greater, which represents a narrow channel, the velocity has a minimum at the orifice centreline, rises sharply near the orifice edges and then experiences a boundary-layer-like correction over a thickness of O(B’) to satisfy no-slip conditions. For B’/d’ of O(1) the profiles are similar to those in a rectangular duct with a maximum on the centreline, whereas for B’/d’ [Gt ] 1, which describes widely separated channel walls, the solution approaches Hasimoto's solution for the periodic infinite-slit array. In the limit (D’ –- d’)/B’ [Lt ] 1, where the width of the intervening barriers is small compared with the channel height, the solutions exhibit the same behaviour as Lee & Fung's (1969) solution for the flow past a single cylinder. The drag on the zero-thickness barriers in this case is nearly the same as for the cylinder for all aspect ratios.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Lee, J. S. 1969 J. Biomech. 2,187.

2. Hele-Shaw, H. S. 1898 Nature 58,34.

3. Weinbaum, S. , Tsay, R. & Curry, F. E. 1992 Microvascular Res. 44,85.

4. Tsay, R. , Weinbaum, S. & Pfeffer, R. 1989 Chem. Engng Commun. 82,67.

5. Dagan, Z. , Pfeffer, R. & Weinbaum, S. 1982 J. Fluid Mech. 122,273.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3