Experiments on instability and turbulence in a stratified shear flow

Author:

Thorpe S. A.

Abstract

This is a study of turbulence which results from Kelvin—Helmholtz instability at the interface between two miscible fluids in a two-dimensional shear flow in the laboratory. The growth of two-dimensional ‘billows’, their disruption by turbulence, and the eventual decay of this turbulence and the re-establishment of a gravitationally and kinematically stable interface are described. Continuous measurements of density and horizontal velocity from both fixed and vertically moving probes have been made, and the records obtained are presented, together with photographs showing the simultaneous appearance of the flow, which serve to identify the physical nature of events seen in the records. The measurements show how the fine-structure of the density field described in earlier experiments is related to velocity fluctuations. The vertical length scales of the final mean velocity and density structure are found to be different, and to depend on the Richardson number at which instability first occurred. The eventual Richardson number at the centre of layer is, however, not dependent on the initial Richardson number and has a value of about one third. The implications of these results to the eddy diffusion coefficients, to the energy exchange, and to turbulence in the ocean and the atmosphere are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. Woods, J. D. 1968 J. Fluid Mech. 32,791.

2. Hardy, K. R. , Reed, R. J. & Mather, G. K. 1973 Quart. J. Roy. Met. Soc. 99,279.

3. Moore, M. J. & Long, R. R. 1971 J. Fluid Mech. 49,635.

4. Orlanski, I. & Bryan, K. 1969 J. Geophys. Res. 74,6975.

5. Readings, C. J. , Golton, E. & Browning, K. A. 1973 Boundary-Layer Met. (in press).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3