Stability and bifurcations in stratified Taylor–Couette flow

Author:

CATON F.,JANIAUD B.,HOPFINGER E. J.

Abstract

In this article we present new experimental and theoretical results which were obtained for the flow between two concentric cylinders, with the inner one rotating and in the presence of an axial, stable density stratification. This system is characterized by two control parameters: one destabilizing, the rotation rate of the inner cylinder; and the other stabilizing, the stratification.Two oscillatory linear stability analyses assuming axisymmetric flow conditions are presented. First an eigenmode linear stability analysis is performed, using the small-gap approximation. The solutions obtained give insight into the instability mechanisms and indicate the existence of a confined internal gravity wave mode at the onset of instability. In the second stability analysis, only diffusion is neglected, predicting accurately the instability threshold as well as the critical pulsation for all the stratifications used in the experiments.Experiments show that the basic, purely azimuthal flow (circular Couette flow) is destabilized through a supercritical Hopf bifurcation to an oscillatory flow of confined internal gravity waves, in excellent agreement with the linear stability analysis. The secondary bifurcation, which takes the system to a pattern of drifting non-axisymmetric vortices, is a saddle-node bifurcation. The proposed bifurcation diagram shows a global bifurcation, and explains the discrepancies between previous experimental and numerical results. For slightly larger values of the rotation rate, weakly turbulent spectra are obtained, indicating an early appearance of weak turbulence: stationary structures and defects coexist. Moreover, in this regime, there is a large distribution of structure sizes. Visualizations of the next regime exhibit constant-wavelength structures and fluid exchange between neighbouring cells, similar to wavy vortices. Their existence is explained by a simple energy argument.The generalization of the bifurcation diagram to hydrodynamic systems with one destabilizing and one stabilizing control parameter is discussed. A qualitative argument is derived to discriminate between oscillatory and stationary onset of instability in the general case.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Budget Characterisation of the Optimal Disturbance in Stratified Shear Flow;Fluids;2024-04-29

2. Stably stratified Taylor–Couette flows;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

3. A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

4. Destabilizing resonances of precessing inertia-gravity waves;Physical Review E;2022-03-16

5. Stratified Taylor–Couette flow: nonlinear dynamics;Journal of Fluid Mechanics;2021-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3