Self-diffusion in sheared suspensions

Author:

Morris Jeffrey F.,Brady John F.

Abstract

Self-diffusion in a suspension of spherical particles in steady linear shear flow is investigated by following the time evolution of the correlation of number density fluctuations. Expressions are presented for the evaluation of the self-diffusivity in a suspension which is either raacroscopically quiescent or in linear flow at arbitrary Peclet number $Pe = \dot{\gamma}a^2/2D$, where $\dot{\gamma}$ is the shear rate, a is the particle radius, and D = kBT/6πa is the diffusion coefficient of an isolated particle. Here, kB is Boltzmann's constant, T is the absolute temperature, and η is the viscosity of the suspending fluid. The short-time self-diffusion tensor is given by kBT times the microstructural average of the hydrodynamic mobility of a particle, and depends on the volume fraction $\phi = \frac{4}{3}\pi a^3n$ and Pe only when hydrodynamic interactions are considered. As a tagged particle moves through the suspension, it perturbs the average microstructure, and the long-time self-diffusion tensor, Ds, is given by the sum of D0s and the correlation of the flux of a tagged particle with this perturbation. In a flowing suspension both D0s and D are anisotropic, in general, with the anisotropy of D0s due solely to that of the steady microstructure. The influence of flow upon Ds is more involved, having three parts: the first is due to the non-equilibrium microstructure, the second is due to the perturbation to the microstructure caused by the motion of a tagged particle, and the third is by providing a mechanism for diffusion that is absent in a quiescent suspension through correlation of hydrodynamic velocity fluctuations.The self-diffusivity in a simply sheared suspension of identical hard spheres is determined to OPe3/2) for Pe ≤ 1 and ø ≤ 1, both with and without hydro-dynamic interactions between the particles. The leading dependence upon flow of D0s is 0.22DøPeÊ, where Ê is the rate-of-strain tensor made dimensionless with $\dot{\gamma}$. Regardless of whether or not the particles interact hydrodynamically, flow influences Ds at OPe) and OPe3/2). In the absence of hydrodynamics, the leading correction is proportional to øPeDÊ. The correction of OPe3/2), which results from a singular advection-diffusion problem, is proportional, in the absence of hydrodynamic interactions, to øPe3/2DI; when hydrodynamics are included, the correction is given by two terms, one proportional to Ê, and the second a non-isotropic tensor.At high ø a scaling theory based on the approach of Brady (1994) is used to approximate Ds. For weak flows the long-time self-diffusivity factors into the product of the long-time self-diffusivity in the absence of flow and a non-dimensional function of $\bar{P}e = \dot{\gamma}a^2/2D^s_0(\phi)$. At small $\bar{P}e$ the dependence on $\bar{P}e$ is the same as at low ø.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Acrivos, A. , Batchelor, G. K. , Hinch, E. J. , Koch, D. L. & Mauri, R. 1992 Longitudinal shear-induced diffusion of spheres in a dilute suspension.J. Fluid Mech. 240,651.

2. Leighton, D. & Acrivos, A. 1987 Measurement of self-diffusion in concentrated suspensions of spheres.J. Fluid Mech. 177,109.

3. Frankel, I. & Brenner, H. 1991 Generalized Taylor dispersion phenomena in unbounded homogeneous shear flows.J. Fluid Mech. 230,147.

4. Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction.J. Fluid Mech. 74,1.

5. Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field.J. Fluid Mech. 56,375.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3