Domain relaxation in Langmuir films

Author:

ALEXANDER JAMES C.,BERNOFF ANDREW J.,MANN ELIZABETH K.,MANN J. ADIN,WINTERSMITH JACOB R.,ZOU LU

Abstract

We report on theoretical studies of molecularly thin Langmuir films on the surface of a quiescent subfluid and qualitatively compare the results to both new and previous experiments. The film covers the entire fluid surface, but domains of different phases are observed. In the absence of external forcing, the compact domains tend to relax to circles, driven by a line tension at the phase boundaries. When stretched (by a transient applied stagnation-point flow or by stirring), a compact domain elongates, creating a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape will then relax slowly to the minimum-energy configuration of a circular domain. The tether is never observed to rupture, even when it is more than a hundred times as long as it is wide. We model these experiments by taking previous descriptions of the full hydrodynamics, identifying the dominant effects via dimensional analysis, and reducing the system to a more tractable form. The result is a free boundary problem for an inviscid Langmuir film whose motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. Using this model we derive relaxation rates for perturbations of a uniform strip and a circular patch. We also derive a boundary integral formulation which allows an efficient numerical solution of the problem. Numerically this model replicates the formation of a bola and the subsequent relaxation observed in the experiments. Finally, we suggest physical properties of the system (such as line tension) that can be deduced by comparison of the theory and numerical simulations to the experiment. Two movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference45 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3