A DNS-based thermal second-moment closure for buoyant convection at vertical walls

Author:

DOL H. S.,HANJALIĆ K.,VERSTEEGH T. A. M.

Abstract

Direct numerical simulations (DNS) of natural convection in a vertical channel by Versteegh & Nieuwstadt (1998) are used for assessing the budget of the turbulent heat flux θui and the temperature variance θ2, and for modelling the transport equations governing these two properties. The analysis is confined to a simple fully developed situation in which the gravitational vector, as the sole driving force, is perpendicular to the only non-zero component of the mean temperature gradient. Despite its simplicity, the flow displays many interesting features and represents a generic case of the interaction of buoyancy-driven turbulent temperature and velocity fields. The paper discusses the near-wall variation of the second moments and their budgets, as well as possible scaling of θui and θ 2 both in the near-wall region and away from the wall. Various proposals for the Reynolds-averaged modelling are analysed and new models are proposed for these two transport equations using the term-by- term approach. An a priori test (using the DNS data for properties other than θui and θ 2) reproduced very well all terms in the transport equations, as well as their near-wall behaviours and wall limits, without the use of any wall-topology-dependent parameters. The computational effort is still comparable to that for the ‘basic model’. The new term-by-term model of the θui and θ 2 equations was then used for a full simulation in conjunction with a low-Reynolds-number second-moment velocity closure, which was earlier found to reproduce satisfactorily a variety of isothermal wall flows. Despite excellent term-by-term reproduction of thermal turbulence, the predictions with the full model show less satisfactory agreement with the DNS data than a priori validation, indicating a further need for improvement of the modelling of buoyancy effects on mechanical turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3