On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces

Author:

KARAPETSAS GEORGE,CRASTER RICHARD V.,MATAR OMAR K.

Abstract

The mechanisms driving the surfactant-enhanced spreading of droplets on the surface of solid substrates, and particularly those underlying the superspreading behaviour sometimes observed, are investigated theoretically. Lubrication theory for the droplet motion, together with advection–diffusion equations and chemical kinetic fluxes for the surfactant transport, leads to coupled evolution equations for the drop thickness, interfacial concentrations of surfactant monomers and bulk concentrations of monomers and micellar, or other, aggregates. The surfactant can be adsorbed on the substrate either directly from the bulk monomer concentrations or from the liquid–air interface through the contact line. An important feature of the spreading model developed here is the surfactant behaviour at the contact line; this is modelled using a constitutive relation, which is dependent on the local surfactant concentration. The evolution equations are solved numerically, using the finite-element method, and we present a thorough parametric analysis for cases of both insoluble and soluble surfactants with concentrations that can, in the latter case, exceed the critical micelle, or aggregate, concentration. The results show that basal adsorption of the surfactant plays a crucial role in the spreading process; the continuous removal of the surfactant that lies upon the liquid–air interface, due to the adsorption at the solid surface, is capable of inducing high Marangoni stresses, close to the droplet edge, driving very fast spreading. The droplet radius grows at a rate proportional to ta with a = 1 or even higher, which is close to the reported experimental values for superspreading. The spreading rates follow a non-monotonic variation with the initial surfactant concentration also in accordance with experimental observations. An accompanying feature is the formation of a rim at the leading edge of the droplet. In some cases, the drop spreads to form a ‘pancake’ or creates a ‘secondary’ front separated from the main droplet.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3