Some developments in the theory of vortex breakdown

Author:

Benjamin T. Brooke

Abstract

The primary aim of the analysis presented herein is to consolidate the ideas of the ‘conjugate-flow’ theory, which proposes that vortex breakdown is fundamentally a transition from a uniform state of swirling flow to one featuring stationary waves of finite amplitude. The original flow is assumed to be supercritical (i.e. incapable of bearing infinitesimal stationary waves), and the mechanism of the transition is explained on the basis of physical principles that are well established in relation to the analogous supercritical-flow phenomenon of the hydraulic jump or bore. In previous presentations of the theory the existence of appropriately descriptive solutions to the full equations of motion has only been inferred from these general principles, but here the solutions are demonstrated explicitly by means of a perturbation analysis. This has basically much in common with the classical theory of solitary and cnoidal waves, which is known to explain well the essential properties of weak bores.In § 2 the basic equations of the problem are set out and the leading results of the original theoretical treatment are recalled. The new developments are mainly presented in § 3, where an analysis of finite-amplitude waves is completed by two different methods, each serving to illustrate points of interest. The effects of small energy losses and of small flow-force reductions (i.e. wave-resistance effects) are considered, and the analysis leads to a general classification of possible phenomena accompanying such changes of integral properties in either slightly supercritical or slightly subcritical vortex flows. The application to vortex breakdown remains the focus of attention, however, and § 3 includes a careful appraisal of some experimental observations on the phenomenon. In § 4 a summary is given of a variant on the previous methods which is required when the radial boundary of the flow is taken to infinity. The main analysis is developed without restriction to particular flow models, but in § 5 the results are applied to a specific example.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Lamb, H. 1932 Hydrodynamics ,6th ed. Cambridge University Press. (Dover reprint 1945.)

2. Ince, E. L. 1926 Ordinary Differential Equations .London:Longmans. (Dover reprint 1956.)

3. Whittaker, E. T. & Watson, G. N. 1927 Modern Analysis ,4th ed. Cambridge University Press.

4. Titchmarsh, E. C. 1962 Eigenfunction Expansions . Part 1,2nd ed. Oxford University Press.

5. Benjamin, T. B. 1966 Internal waves of finite amplitude and permanent form J. Fluid Mech. 25,241.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3