The jet density exponent issue for the noise of heated subsonic jets

Author:

Mani R.

Abstract

The subject of the present study is the question of how the sound power of a jet of constant exit velocity would vary if the jet exit density were varied. Changes in jet exit density would inevitably be accompanied in a real experiment by changes in the speed of sound (temperature) in the jet, so that both effects must be considered simultaneously. The point of view advanced at the end of the study is that experimentally observed results in this area seem to admit an explanation based on how the radiative efficiency of moving acoustic sources is affected by the shrouding effect of a jet flow whose velocity, temperature and density differ from those of the ambient fluid. This change in efficiency is calculated with the aid of a simple model as follows. We determine the acoustic power output of a convected monopole source, simple harmonic in its own frame of reference, moving along the axis of a plug-flow round jet whose velocity is the same as that of the source. The jet is doubly infinite and the source is assumed to have an infinite lifetime. The density and temperature of the jet are allowed to differ from those of the ambient fluid though the specific-heat ratio of the jet fluid is assumed to be the same as that of the ambient. The requirement of equality of the static pressure inside and outside the jet then calls for a certain restraint on how the jet density and temperature vary. For a specific value of the jet exit velocity, the variation of acoustic power with the ratio of jet to ambient density along with a simple assumption on how the source strength varies with jet density are employed to deduce theoretically the ‘jet density exponent for jets which are subsonic with respect to the ambient speed of sound. The jet density exponent is found to depend both on the jet Mach number and even more strongly on a source frequency parameter. The theoretical results are compared with some experimental studies of this problem. Encouraging agreement is obtained both for the detailed observed effects on the power spectrum and the exponent for the overall power.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3