The stability of thermally stratified plane Poiseuille flow

Author:

Gage K. S.,Reid W. H.

Abstract

In studying the stability of a thermally stratified fluid in the presence of a viscous shear flow, we have a situation in which there is an important interaction between the mechanism of instability due to the stratification and the Tollmien-Schlichting mechanism due to the shear. A complete analysis has been carried out for the Bénard problem in the presence of a plane Poiseuille flow and it is shown that, although Squire's transformation can be used to reduce the three-dimensional problem to an equivalent two-dimensional one, a theorem of Squire's type does not follow unless the Richardson number exceeds a certain small negative value. This conclusion follows from the fact that, when the stratification is unstable and the Prandtl number is unity, the equivalent two-dimensional problem becomes identical mathematically to the stability problem for spiral flow between rotating cylinders and, from the known results for the spiral flow problem, Squire's transformation can then be used to obtain the complete three-dimensional stability boundary. For the case of stable stratification, however, Squire's theorem is valid and the instability is of the usual Tollmien—Schlichting type. Additional calculations have been made for this case which show that the flow is completely stabilized when the Richardson number exceeds a certain positive value.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Gallagher, A. P. & Mercer, A. MCD. 1965 Proc. Roy. Soc. A,286,117.

2. Kuo, H.-L. 1963 Phys. Fluids,6,195.

3. Hughes, T. H. & Reid, W. H. 1968 Phil. Trans. A,263,57.

4. Isaacson, E. & Keller, H. B. 1961 Analysis of Numerical Methods .New York:John Wiley and Sons.

5. Mack, L. M. 1965 In Methods in Computational Physics , vol. 4,pp.247–300 (ed. B. Alder , S. Fernbach & M. Rotenberg ).New York:Academic Press.

Cited by 237 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3