On the outer-edge problem of a hypersonic boundary layer

Author:

Lee Richard S.,Cheng H. K.

Abstract

Existing analytical treatments of the hypersonic strong interaction problem adopt the two-region structure of the classical boundary-layer theory; however, the uneven heating and external vorticity created by the highly curved, leading-edge shock wave leads to the question of the uniform validity of the boundary-layer approximation near the boundary-layer edge. Recently Bush (1966), using a non-linear viscosity-temperature law (μ ∞ Tω, ω < 1) instead of the linear one (μ ∞ T) used by previous investigators, demonstrated the need to analyze separately a transitional layer intermediate between the inviscid region and the boundary layer. In this paper, an asymptotic analysis of the Navier-Stokes equations in von Mises's variables, allowing a three-region structure, is carried out for the case of μ ∞ T. Results, with the second-order effects associated with heating and vorticity accounted for, show that a separate analysis of the transitional region is not strictly necessary in this case, and hence the equivalence of the two-region approach is confirmed. On the other hand, it is shown that the second-order boundary-layer correction owing to the heating and vorticity effects, not considered by Bush, is necessary in order to determine a uniformly valid temperature distribution in the physical variables. Numerical results for an insulated and a cold flat plate, considerably different from those of others, are obtained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Van Dyke, M. D. 1962 Higher approximations in boundary-layer theory. Part 1. General analysis J. Fluid Mech. 14,161.

2. Matveeva, N. S. & Sychev, V. V. 1965 On the theory of strong interaction of the boundary layer with an inviscid hypersonic flow PMM 29,644.

3. Lees, L. 1953 On the boundary-layer equations in hypersonic flow and their approximate solutions J. aeronaut. Sci. 20,143.

4. Cheng, H. K. , Hall, J. G. , Golian, T. C. & Hertzberg, A. 1961 Boundary-layer displacement and leading-edge bluntness effects in high-temperature hypersonic flow J. aeronaut. Sci. 28,353.

5. Aroesty, J. 1964 Slip flow and hypersonic boundary layers AIAA J. 2,189.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3