Fully developed viscous and viscoelastic flows in curved pipes

Author:

FAN YURUN,TANNER ROGER I.,PHAN-THIEN NHAN

Abstract

Some h-p finite element computations have been carried out to obtain solutions for fully developed laminar flows in curved pipes with curvature ratios from 0.001 to 0.5. An Oldroyd-3-constant model is used to represent the viscoelastic fluid, which includes the upper-convected Maxwell (UCM) model and the Oldroyd-B model as special cases. With this model we can examine separately the effects of the fluid inertia, and the first and second normal-stress differences. From analysis of the global torque and force balances, three criteria are proposed for this problem to estimate the errors in the computations. Moreover, the finite element solutions are accurately confirmed by the perturbation solutions of Robertson & Muller (1996) in the cases of small Reynolds/Deborah numbers.Our numerical solutions and an order-of-magnitude analysis of the governing equations elucidate the mechanism of the secondary flow in the absence of second normal-stress difference. For Newtonian flow, the pressure gradient near the wall region is the driving force for the secondary flow; for creeping viscoelastic flow, the combination of large axial normal stress with streamline curvature, the so-called hoop stress near the wall, promotes a secondary flow in the same direction as the inertial secondary flow, despite the adverse pressure gradient there; in the case of inertial viscoelastic flow, both the larger axial normal stress and the smaller inertia near the wall promote the secondary flow.For both Newtonian and viscoelastic fluids the secondary volumetric fluxes per unit of work consumption and per unit of axial volumetric flux first increase then decrease as the Reynolds/Deborah number increases; this behaviour should be of interest in engineering applications.Typical negative values of second normal-stress difference can drastically suppress the secondary flow and in the case of small curvature ratios, make the flow approximate the corresponding Poiseuille flow in a straight pipe. The viscoelasticity of Oldroyd-B fluid causes drag enhancement compared to Newtonian flow. Adding a typical negative second normal-stress difference produces large drag reductions for a small curvature ratio δ = 0.01; however, for a large curvature ratio δ = 0.2, although the secondary flows are also drastically attenuated by the second normal-stress difference, the flow resistance remains considerably higher than in Newtonian flow.It was observed that for the UCM and Oldroyd-B models, the limiting Deborah numbers met in our steady solution calculations obey the same scaling criterion as proposed by McKinley et al. (1996) for elastic instabilities; we present an intriguing problem on the relation between the Newton iteration for steady solutions and the linear stability analyses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-scale modelling of dilute viscoelastic liquids: Atomistic to mesoscale mapping of polymer solutions;Polymer;2023-10

2. Curvature-mediated programming of liquid crystal microflows;Soft Matter;2023

3. Secondary flows and losses in radial turbine volutes;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-12-27

4. On the flow of liquid crystals through 90° bends;Physics of Fluids;2022-06

5. Flow of transversely isotropic fluid in curved pipes;Journal of Non-Newtonian Fluid Mechanics;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3