Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows

Author:

MIGNOT EMMANUEL,BARTHELEMY E.,HURTHER D.

Abstract

This investigation focuses on the characteristics of near-bed turbulence in fully rough gravel-bed open-channel flows. The analysis combines results obtained with the double-averaging methodology and local flow characterization, using velocity measurements provided by a high-resolution three-axis Acoustic Doppler Velocity Profiler (ADVP). As a result of the flow heterogeneity induced by the bed topography, the flow is not locally uniform in the near-bed region, and a double-averaging methodology is applied over a length scale much greater than the gravel size. In smooth- and rough-bed flow conditions, without macro-roughness bed elements, maximum turbulent kinetic energy (TKE) production occurs very close to z = 0, while in our case with fully rough flows with macro-roughness elements, maximum turbulence activity is found to occur at gravel crest levels zc (zc/h = 0.1). Turbulent diffusion also reaches a maximum at this elevation. The characteristics of the spatially averaged TKE budget are in good agreement with those obtained in flows over canopies. The hydrodynamic double-averaged properties have strong similarities with mixing layers and reattached mixing layers in flows over backward facing steps. Local time-averaged velocity profiles can be split into three typical classes, namely log, S-shaped and accelerated. It appears that the S-shaped class profiles, located in the wakes of the macro-roughness elements, exhibit an inflectional profile typical of mixing layers. They are of major importance in the double-averaged TKE budget, as they provide a local high contribution to the double-averaged TKE flux, TKE production and dissipation compared to the log class profiles. Consequently, double-averaged TKE production is roughly 75% greater than the dissipation rate at the point of maximal TKE production. Moreover the macro-roughness bed elements imply mixing-layer-type hydrodynamics that play a dominant role in the overall structure of mean near-bed turbulence of gravel-bed channel flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3