Author:
Lakshminarayana B.,Jabbari A.,Yamaoka H.
Abstract
This paper investigates the boundary-layer characteristics on a helical blade of large chord length, enclosed in an annulus and rotating in a fluid otherwise at rest. The three-dimensional form of momentum integral equations is derived, and used to predict the boundary-layer growth and limiting streamline angles on the blade surface. The measurements are in general agreement with the predictions. The wall shear stress correlation, which includes both Reynolds number and rotation parameters, valid for a rotating blade operating at zero pressure gradient, is derived. Radial and tangential velocity profiles, the tangential component of turbulence intensity and blade static pressures are measured at several locations on the blade surface. The nature of flow near the blade tip is discussed. An expression for the radial velocity profile, valid in the outer region of the boundary layer, is derived theoretically.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference27 articles.
1. Kármán T. VON 1946 N.A.C.A. Tech. Mem. 1092.
2. Johnston J. P. 1960 Tram. A.S.M.E.,D 82,233.
3. Schlichting H. 1960 Boundary Layer Theory. McGraw Hill.
4. Face A. 1933 Proc. Roy. Soc. A 142,560.
5. Bradshaw P. 1971 J. Fluid Mech. 46,417.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献