Internal gravity waves generated by a turbulent bottom Ekman layer

Author:

TAYLOR JOHN R.,SARKAR SUTANU

Abstract

Internal gravity waves excited by the turbulent motions in a bottom Ekman layer are examined using large-eddy simulation. The outer flow is steady and uniformly stratified while the density gradient is set to zero at the flat lower wall. After initializing with a linear density profile, a mixed layer forms near the wall separated from the ambient stratification by a pycnocline. Two types of internal wave are observed. Waves with frequencies larger than the free-stream buoyancy frequency are seen in the pycnocline, and vertically propagating internal waves are observed in the outer layer with characteristic frequency and wavenumber spectra. Since a signature of the pycnocline waves is observed in the frequency spectrum of the mixed layer, these waves may affect the boundary-layer turbulence. The dominant outer-layer waves have a group velocity directed 35-60° from the vertical axis, which is consistent with previous laboratory studies. The energy flux associated with the radiated waves is small compared to the integrated dissipation in the boundary layer, but is of the same order as the integrated buoyancy flux. A linear model is proposed to estimate the decay in wave amplitude owing to viscous effects. Starting from the observed wave amplitudes at the bottom of the pycnocline, the model prediction for the spectral distribution of the outer layer wave amplitude compares favourably with the simulation results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3