Quadrupoles in potential flow: two model problems

Author:

Blackburn H. W.

Abstract

The Ffowcs Williams-Hawkings formulation of the sources of the acoustic analogy is examined by reference to two compressible inviscid flows whose density and velocity fields are known exactly. The purpose of this exercise is to generate some feel for the importance of the various source terms in determining the sound of moving surfaces with shocks, and to help quantify the errors involved in approximating those sources. Practical applications of the theory involve flows that cannot be known exactly and the errors of approximation cannot be checked directly. Progress must start with simple cases, and these model problems represent a first move. The flows considered are the one-dimensional flow caused by a plane boundary impulsively accelerated into a fluid, and the two-dimensional flow due to a wedge moving supersonically and supporting a plane attached shock.For each of these flows, a system of analogous acoustic sources is developed, the fields of which, when superposed, produce a density field (an acoustic field) identical with that of the original flow. The acoustic fields generated by the component source terms are calculated and compared. This suggests that the volume quadrupoles of potential flow play only a minor role as sound generators. When properly viewed the field is generated entirely on the bounding surfaces of the flow. A general argument shows that volume quadrupoles in steady rectilinear motion only influence the sound field through propagation effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Ffowcs Williams, J. E. 1976 The theoretical modelling of aerodynamic noise.Proc. Indian Acad. Sci. 1,57–72.

2. Howe, M. S. 1975 Contributions to the theory of aerodynamic sound.J. Fluid Mech. 71,625–673.

3. Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound.Proc. E. Soc. Lond. A 231,505–514.

4. Hanson, D. B. & Fink, M. R. 1978 The importance of quadrupole sources in prediction of transonic tip speed propeller noise.J. Sound Vib. 62,19–38.

5. Crow, S. C. 1969 Distortion of sonic bangs by atmospheric turbulence.J. Fluid Mech. 37,529–563.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3