A numerical study of the shearing motion of emulsions and foams

Author:

Li Xiaofan,Zhou Hua,Pozrikidis C.

Abstract

A numerical study is presented of the motion of two-dimensional, doubly periodic, dilute and concentrated emulsions of liquid drops with constant surface tension, subject to a simple shear flow. The numerical method is based on a boundary integral formulation that employs a Green's function for doubly periodic Stokes flow, computed using the Ewald summation method. Under the assumption that the viscosity of the drops is equal to that of the ambient fluid, the motion is examined in a broad range of capillary numbers, volume fractions, and initial geometrical configurations. The latter include square and hexagonal lattices of circular and closely packed hexagonal drops with rounded corners. Based on the nature of the asymptotic motion at large times, a phase diagram is constructed separating regions where periodic motion is established, or the emulsion is destabilized due to continued elongation or coalescence of intercepting drops. Comparisons with previous computations for bounded systems illustrate the significance of the walls on the evolution and rheological properties of an emulsion. It is shown that the shearing flow is able to stabilize a concentrated emulsion against the tendency of the drops to become circular and coalesce, thereby allowing for periodic evolution even when the volume fraction of the suspended phase might be close to that for dry foam. This suggests that the imposed shearing flow plays a role similar to that of the disjoining pressure for stationary foam. At high volume fractions, the geometry of the microstructure and flow at the Plateau borders and within the thin films separating adjacent drops are illustrated and discussed with reference to the predictions of the quasi-steady theory of foam. Although the accuracy of certain fundamental assumptions underlying the quasi-steady theory is not confirmed by the numerical results, we find qualitative agreement regarding the basic geometrical features of the evolving microstructure and effective rheological properties of the emulsion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Kraynik, A. M. 1988 Foam flow.Ann. Rev. Fluid Mech. 20,325–357.

2. Khan, S. A. & Armstrong, R. C. 1986 Rheology of foams: I. Theory for dry foams.J. Non-Newtonian Fluid Mech. 22,1–22.

3. Kennedy, M. R. , Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops and the rheology of dilute emulsions in simple shear flow.Computers and Fluids 23,251–278.

4. Kraynik, A. M. & Hansen, M. G. 1987 Foam rheology: a model of viscous phenomena.J. Rheol. 31,175–205.

5. Pacetti, S. D. 1985 Structural modeling of foam rheology .MS thesis, University of Texas,Houston.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3