Nonlinear dynamics of the viscoelastic Kolmogorov flow

Author:

BISTAGNINO A.,BOFFETTA G.,CELANI A.,MAZZINO A.,PULIAFITO A.,VERGASSOLA M.

Abstract

The weakly nonlinear dynamics of large-scale perturbations in a viscoelastic flow is investigated both analytically, via asymptotic methods, and numerically. For sufficiently small elasticities, dynamics is ruled by a Cahn–Hilliard equation with a quartic potential. Physically, this amounts to saying that, for small elasticities, polymers do not alter the purely hydrodynamical mechanisms responsible for the nonlinear dynamics in the Newtonian case (i.e. without polymers). The approach to the steady state is quantitatively similar to the Newtonian case as well, the dynamics being ruled by the same kink–antikink interactions as in the Newtonian limit. The above scenario does not extend to large elasticities. We found a critical value above which polymers drastically affect the dynamics of large-scale perturbations. In this latter case, a new dynamics not observed in the Newtonian case emerges. The most evident fingerprint of the new dynamics is the slowing down of the annihilation processes which lead to the steady states via weaker kink–antikink interactions. In conclusion, polymers strongly affect the large-scale dynamics. This takes place via a reduction of drag forces we were able to quantify from the asymptotic analysis. This suggests a possible relation of this phenomenon with the dramatic drag-reduction effect taking place in the far turbulent regime.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. Direct numerical simulation of the turbulent channel flow of a polymer solution

2. Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers;Toms;Proc. 1st International Congress on Rheology,1949

3. Weak turbulence in periodic flows;Sivashinsky;Physica,1985

4. Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids

5. Metastability and vortex pairing in the kolmogorov flow

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3