Active vorticity control in a shear flow using a flapping foil

Author:

Gopalkrishnan R.,Triantafyllou M. S.,Triantafyllou G. S.,Barrett D.

Abstract

It is shown experimentally that free shear flows can be substantially altered through direct control of the large coherent vortices present in the flow.First, flow-visualization experiments are conducted in Kalliroscope fluid at Reynolds number 550. A foil is placed in the wake of a D-section cylinder, sufficiently far behind the cylinder so that it does not interfere with the vortex formation process. The foil performs a heaving and pitching oscillation at a frequency close to the Strouhal frequency of the cylinder, while cylinder and foil also move forward at constant speed. By varying the phase of the foil oscillation, three basic interaction modes are identified. (i) Formation of a street of pairs of counter-rotating vortices, each pair consisting of one vortex from the initial street of the cylinder and one vortex shed by the foil. The width of the wake is then substantially increased. (ii) Formation of a street of vortices with reduced or even reverse circulation compared to that of oncoming cylinder vortices, through repositioning of cylinder vortices by the foil and interaction with vorticity of the opposite sign shed from the trailing edge of the foil. (iii) Formation of a street of vortices with circulation increased through merging of cylinder vortices with vortices of the same sign shed by the foil. In modes (ii) and (iii) considerable repositioning of the cylinder vortices takes place immediately behind the foil, resulting in a regular or reverse Kármán street. The formation of these three interaction patterns is achieved only for specific parametric values; for different values of the parameters no dominant stable pattern emerges.Subsequently, the experiments are repeated in a different facility at larger scale, resulting in Reynolds number 20000, in order to obtain force and torque measurements. The purpose of the second set of experiments is to assess the impact of flow control on the efficiency of the oscillating foil, and hence investigate the possibility of energy extraction. It is found that the efficiency of the foil depends strongly on the phase difference between the oscillation of the foil and the arrival of cylinder vortices. Peaks in foil efficiency are associated with the formation of a street of weakened vortices and energy extraction by the foil from the vortices of the vortex street.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Chen, Y. Y. & Templin, J. T. 1974 Suppression of spatial waves by distortion of jet velocity profile.Phys. Fluids 17 (11),2124–2125.

2. Rosen, M. W. 1959 Water flow about a swimming fish. Stat. Tech. Publ. US Naval Ordn. Test Station ,California,NOTS TP 2298.

3. Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers.J. Fluid Mech. 248,267–296.

4. Katzmayr, R. 1922 Effect of periodic changes of angle of attack on behavior of airfoils.NACA TM-147.

5. Matisse, P. & Gorman, M. 1984 Neutrally buoyant anisotropic particles for flow visualization.Phys. Fluids 27 (4),759–760.

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3